The influence of phonetic features on aphasic speech perception

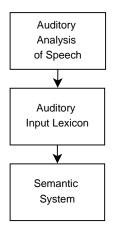
Dörte Hessler, Roel Jonkers and Roelien Bastiaanse

University of Groningen, Center for Language and Cognition Groningen

October 1st, 2009

▲□□ ► ▲ □ ► ▲

Background I


Speech perception is a multimodal process:

- using auditory and visual input (Rosenblum, 2008)
- in which seeing the speaker facilitates comprehension
 - in a noisy environment (Sumby & Pollack, 1954)
 - with demanding contents (Reisberg et al., 1987)
 - in aphasia (Shindo et al., 1991)

・ロト ・ 同ト ・ ヨト ・ ヨト

Background II

Auditory perception in neuropsychological models:

・ロト ・回ト ・ヨト ・ヨト

Background III

The phonetic features

- place of articulation(/t/ vs. /p/)
- $\bullet\,$ manner of articulation (/t/ vs. /s/)
- \bullet voicing (/t/ vs. /d/)

influence the perception of speech:

 smaller differences (1 feature) more difficult to detect than bigger ones for English aphasic listeners (Blumstein et al., 1977)

Background IV

Features seem differently affected in Dutch aphasia (Klitsch, 2008)

- place of articulation seemed most affected
- but: material used (PALPA, Dutch Version) not designed to investigate that difference:
 - voicing contrasts occured initially
 - other contrasts finally or in metathesis
- Csépe et al. (2001) found for Hungarian that *voicing* was most affected

・ロト ・ 同ト ・ ヨト ・ ヨト

Aims

The current study investigates:

- whether Dutch aphasic subjects can also detect wider distinctions more easily than narrow ones
- which phonetic features are most vulnerable (if manipulated in the same position)
- the influence of lip-reading on (aphasic) perception of speech

- 4 回 と 4 ヨ と 4 ヨ と

Methods I: Procedure

Nonword discrimination task:

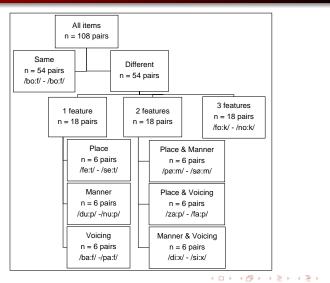
- videos of speaker articulating 2 syllables
- decision whether both were same or different
- button press to answer
- 3 conditions of presentation:
 - auditory only (AO)
 - visual only (VO)
 - audiovisual (AV)

(4月) (4日) (4日)

Methods I: Procedure

Nonword discrimination task:

- videos of speaker articulating 2 syllables
- decision whether both were same or different
- button press to answer
- 3 conditions of presentation:
 - auditory only (AO)
 - visual only (VO)
 - audiovisual (AV)


・ 同 ト ・ ヨ ト ・ ヨ ト

Methods II: Material

phonologically possible but non-existing CVC-syllables

- fixed place of difference (initial)
- amount and type of features differing within a pair controlled

Methods II: Material

Hessler, Jonkers and Bastiaanse Phonetic features in aphasic perception

Methods III: Participants

All participants:

- Dutch, right-handed, with normal hearing and (corrected to) normal vision
- \Rightarrow 14 non-brain-damaged controls
- \Rightarrow 6 aphasic subjects

- 4 回 ト 4 ヨ ト 4 ヨ ト

Methods III: Participants

Initials	Age	Gender	Type	Months	PALPA
			of	post onset	Nonword
			Aphasia		Discrimination
WB	57	male	Wernicke	148	56/72
BB	64	male	Global	5	53/72
ΕK	48	male	Amnestic	16	58/72
ΤB	47	female	Global	8	68/72
JH	51	female	Mixed	44	66/72
MB	47	female	Global	4	64/72

イロト イヨト イヨト イヨト

Results

Control Subjects:

- scored at ceiling in AO and AV conditions
- VO worse than AO or AV (Wilcoxon: p < 0.01)
 - concerning mainly voicing and manner

Aphasic Subjects:

- worse than controls in all 3 conditions (Mann-Whitney-U: p < .001)
- performance differed between the 3 conditions (Friedman: p < .01):
 - $\bullet\,$ AV better than AO and VO (Wilcoxon: p<.05)
 - AO better than VO (Wilcoxon: p<.05)

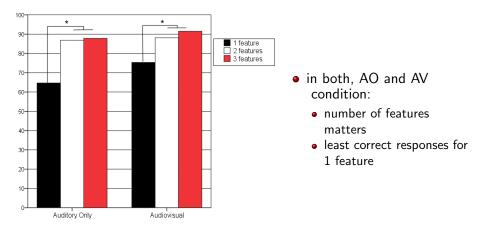
Results

Control Subjects:

- scored at ceiling in AO and AV conditions
- VO worse than AO or AV (Wilcoxon: p < 0.01)
 - concerning mainly voicing and manner

Aphasic Subjects:

- worse than controls in all 3 conditions (Mann-Whitney-U: p < .001)
- performance differed between the 3 conditions (Friedman: p < .01):
 - AV better than AO and VO (Wilcoxon: p < .05)
 - AO better than VO (Wilcoxon: p<.05)

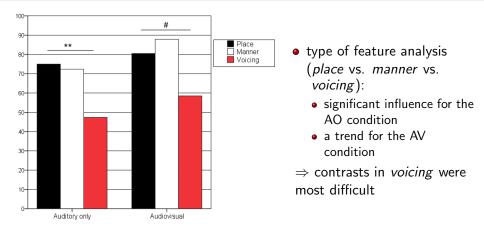

Results

Condition	Controls (avg. correct)	Aphasic subj. (avg. correct)	Z-Score	p-value
Auditory only condition	99%	87%	-3.521	p <.001
Audiovisual condition	99%	90%	-3.545	p < .001
Visual only condition	83%	63%	-3.387	p < .001

Statistic analyses with Mann-Whitney-U Test, 2-tailed

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Results


Statistic analyses with Wilcoxon, 2-tailed: *:p<.05

Hessler, Jonkers and Bastiaanse

Phonetic features in aphasic perception

イロト イポト イヨト イヨト

Results

Statistic analyses with Friedman Anova: **:p < .01; #:p = .094 $= b < \overline{r} > 4 \equiv b < 0$

문 > 문

Discussion

- additional lip-reading improves performance
 - replicating results of e.g. Shindo et al. (1991)
- most difficulties occur with small differences
 as previously shown by Blumstein et al. (1977) for English

- 4 同 2 4 日 2 4 日 2

Discussion

- additional lip-reading improves performance
 - replicating results of e.g. Shindo et al. (1991)
- most difficulties occur with small differences
 - as previously shown by Blumstein et al. (1977) for English

(4月) (4日) (4日)

Discussion

Differences in voicing are most difficult to perceive

- \bullet contrary to Klitsch (2008) \rightarrow but: difference in materials
- in line with the results for Hungarian by Csépe et al. (2001)

Differences between *place of articulation* and *voicing*:

Discussion

Differences in voicing are most difficult to perceive

- \bullet contrary to Klitsch (2008) \rightarrow but: difference in materials
- in line with the results for Hungarian by Csépe et al. (2001)

Differences between place of articulation and voicing:

- place of articulation is conveyed by spectral cues
- voicing is conveyed by temporal cues

Discussion

Differences in voicing are most difficult to perceive

- contrary to Klitsch (2008) \rightarrow but: difference in materials
- in line with the results for Hungarian by Csépe et al. (2001)

Differences between place of articulation and voicing:

- place of articulation is conveyed by spectral cues
- voicing is conveyed by temporal cues
- \Rightarrow This difference could explain the different performance

▲□→ ▲ □→ ▲

Discussion

Differences in voicing are most difficult to perceive

- contrary to Klitsch (2008) \rightarrow but: difference in materials
- in line with the results for Hungarian by Csépe et al. (2001)

Differences between place of articulation and voicing:

- place of articulation is conveyed by spectral cues
- voicing is conveyed by temporal cues
- \Rightarrow This difference could explain the different performance

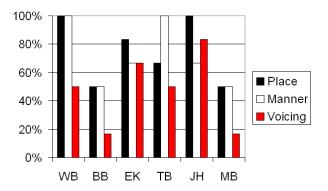
- 4 回 ト 4 ヨ ト 4 ヨ ト

Questions & Comments

Thank you for your attention! e-mail: d.a.hessler@rug.nl website: www.doerte.eu

- 4 回 ト 4 ヨ ト 4 ヨ ト

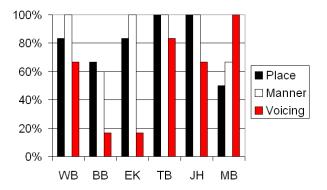
Appendix la


Individual Results:

Initials	Auditory only				Audiovisual		
mutais	Place	Manner	Voicing	Pla	ace	Manner	Voicing
WB (Wernicke)	100%	100%	50%	83	8%	100%	67%
BB (Global)	50%	50%	17%	67	7%	60%	17%
EK (Amnestic)	83%	67%	67%	83	8%	100%	17%
TB (Global)	67%	100%	50%	10	0%	100%	83%
JH (Mixed)	100%	67%	83%	10	0%	100%	67%
MB (Global)	50%	50%	17%	50	0%	67%	100%

イロト イヨト イヨト イヨト

Appendix Ib


Individual Results (Auditory only condition):

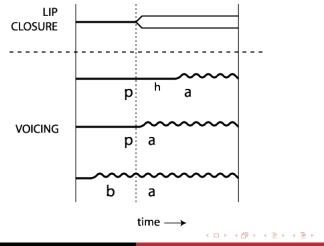
<ロ> (四) (四) (三) (三)

Appendix Ic

Individual Results (Audiovisual condition):

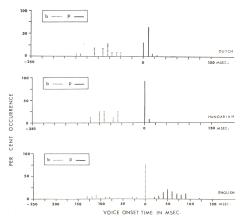
<ロ> (四) (四) (三) (三)

Appendix II


Performance of aphasic listeners in 'different' condition:

Condition	Same (avg. correct)	Different (avg. correct)
Auditory only condition	94%	80%
Audiovisual condition Visual only condition	$94\% \\ 78\%$	$85\% \\ 48\%$

・ロト ・回ト ・ヨト ・ヨト


Appendix IIIa

Distinctions in Voicing:

Appendix IIIb

Voicing Distinctions in Dutch, Hungarian and English¹:

¹taken from Lisker & Abramson (1964)

Hessler, Jonkers and Bastiaanse

Phonetic features in aphasic perception