

The influence of speechreading on aphasic comprehension

Dörte Hessler

University of Groningen, Center for Language and Cognition Groningen

November 8th, 2010

CLCG

faculty of arts

university of

groningen

- using auditory and visual input (Rosenblum, 2008)
- in which seeing the speaker facilitates comprehension

faculty of arts

university of

eroningen

- using auditory and visual input (Rosenblum, 2008)
- in which seeing the speaker facilitates comprehension
 - in a noisy environment (Sumby & Pollack, 1954)

faculty of arts

university of

eroningen

- using auditory and visual input (Rosenblum, 2008)
- in which seeing the speaker facilitates comprehension
 - in a noisy environment (Sumby & Pollack, 1954)
 - with demanding contents (Reisberg et al., 1987)

faculty of arts

university of

eroningen

- using auditory and visual input (Rosenblum, 2008)
- in which seeing the speaker facilitates comprehension
 - in a noisy environment (Sumby & Pollack, 1954)
 - with demanding contents (Reisberg et al., 1987)
 - in aphasia (Shindo et al., 1991)

faculty of arts

university of

- using auditory and visual input (Rosenblum, 2008)
- in which seeing the speaker facilitates comprehension
 - in a noisy environment (Sumby & Pollack, 1954)
 - with demanding contents (Reisberg et al., 1987)
 - in aphasia (Shindo et al., 1991)
 - in normal comprehension (McGurk & MacDonald, 1976)

The McGurk Effect

McGurk effect = proof that auditory and visual information are both part of perception!

- Dubbing of different auditory and visual information
 - auditory: /ba/
 - visual: /ga/

The McGurk Effect

McGurk effect = proof that auditory and visual information are both part of perception!

- Dubbing of different auditory and visual information
 - auditory: /ba/
 - visual: /ga/
 - perception: /da/

The McGurk Effect

McGurk effect = proof that auditory and visual information are both part of perception!

- Dubbing of different auditory and visual information
 - auditory: /ba/
 - visual: /ga/
 - perception: /da/
- can only be explained by influence of seen on heard speech!

Introduction Study 1 Study 2 Studies 1 & 2 Discussion & Conclusion

McGurk Example

Example video can be found at:

http://ilabs.washington.edu/kuhl/research.html#Auditory-Visual

Models

Auditory perception in neuropsychological models:

CLCG

Phonetic Features

faculty of arts

university of

Every phoneme consists of 3 phonetic features:

- place of articulation(/t/ vs. /p/)
- manner of articulation (/t/ vs. /s/)
- voicing (/t/ vs. /d/)

Phonemes can differ in 1, 2 or all 3 features:

- house mouse (3 features)
- lice mice (2 features: place & manner)
- key pea (1 feature: place)
- bath path (1 feature: voicing)

Phonetic features II

Phonetic features influence the perception of speech:

 smaller differences (1 feature) more difficult to detect than bigger ones for English aphasic listeners (Blumstein et al., 1977)

Phonetic Features III

faculty of arts

university of

eroningen

Features seem differently affected in Dutch aphasia (Klitsch, 2008)

- place of articulation seemed most affected
- but: material used (PALPA, Dutch Version) not designed to investigate that difference:
 - voicing contrasts occured initially
 - other contrasts finally or in metathesis
- Csépe et al. (2001) found for Hungarian that voicing was most affected

Introduction Study 1 Study 2 Studies 1 & 2 Discussion & Conclusion

Voicing I

university of groningen

嵩

Distinctions in Voicing:

faculty of arts

Voicing II

university of

groningen

Ņ

faculty of arts

Voicing Distinctions in Dutch, Hungarian and English¹:

¹taken from Lisker & Abramson (1964)

Models II

university of

groningen

20

faculty of arts

Model of audiovisual perception (taken from Campbell (1988; 1990)):

CLCG

Models III

university of

groningen

faculty of arts

嵩

Campbell's model applied to the McGurk effect:

McGurk Effect and Aphasia

Campbell et al. (1990):

- 4 subjects with braindamage (1 with aphasia)
- aphasic subject had difficulties in auditory processing, lip-reading fine
- showed McGurk effect for consonants

McGurk Effect and Aphasia II

Youse et al. (2004):

university of

groningen

• 1 aphasic subject

faculty of arts

- problems identifying syllables in all conditions
- 100% McGurk responses (/di/), but

McGurk Effect and Aphasia II

Youse et al. (2004):

university of

eroningen

1 aphasic subject

faculty of arts

- problems identifying syllables in all conditions
- 100% McGurk responses (/di/), but
- answer bias: answered /di/ almost always in all conditions

Introduction Study 1 Study 2 Studies 1 & 2 Discussion & Conclusion

McGurk Effect and Aphasia III

Klitsch (2008):

- 6 aphasic patients
- investigation of influence of lexical status
 - more McGurk responses if "input" = nonword & "output" = real word
- and age
 - aphasia = age-matched >students

My Study - Questions

faculty of arts

university of

groningen

- which phonetic features are integrated in audiovisual processing
- how does AV-integration work in aphasic subjects
 - maybe less influence of visual information

My Study - Questions

faculty of arts

university of

groningen

- which phonetic features are integrated in audiovisual processing
- how does AV-integration work in aphasic subjects
 - maybe less influence of visual information
 - or maybe even more?

My Study - Questions

faculty of arts

university of

eroningen

- which phonetic features are integrated in audiovisual processing
- how does AV-integration work in aphasic subjects
 - maybe less influence of visual information
 - or maybe even more?
- how is integration accomplished by the brain

My Study - Overview

faculty of arts

2 experiments and a pilot study:

• Pilot: Evaluation of material

赏

university of groningen

Introduction Study 1 Study 2 Studies 1 & 2 Discussion & Conclusion

My Study - Overview

faculty of arts

university of

groningen

2 experiments and a pilot study:

- Pilot: Evaluation of material
- Discrimination Experiment
- Identification Experiment
- ERP Experiment

My Study - Overview

faculty of arts

university of

groningen

57

2 experiments and a pilot study:

- Pilot: Evaluation of material
- Discrimination Experiment
- Identification Experiment

Materials

university of

eroningen

Generally:

- nonwords with CVC(C) structure
- conditions: auditory only, audiovisual, visual only, McGurk
- recording of videos

faculty of arts

- male native speaker of Dutch
- quiet room
- audio via extra microphone
- editing of videos
 - each video: 3 seconds long, speaker 480 ms in rest position initially
 - removing of picture or sound for AO/VO conditions
 - dubbing of different AO & VO stimuli for McGurk items

Pilot Study - Results

faculty of arts

university of

groningen

- amount McGurk answers comparable to Klitsch (2008)
- 4 (of 39) items without any McGurk response
- 7 items with comments about quality

Discrimination - Aims

faculty of arts

university of

eroningen

The current study investigates:

- whether Dutch aphasic subjects can also detect wider distinctions more easily than narrow ones
- which phonetic features are most vulnerable (if manipulated in the same position)
- the influence of lip-reading on (aphasic) perception of speech

Discrimination - Procedure

Nonword discrimination task:

- videos of speaker articulating 2 syllables
- decision whether both were same or different
- button press to answer

Discrimination - Procedure

Nonword discrimination task:

faculty of arts

university of

eroningen

- videos of speaker articulating 2 syllables
- decision whether both were same or different
- button press to answer

3 conditions of presentation:

- auditory only (AO)
- visual only (VO)
- audiovisual (AV)

Discrimination - Procedure

Discrimination - Material

phonologically possible but non-existing CVC-syllables

- fixed place of difference (initial)
- amount and type of features differing within a pair controlled

Discrimination - Material

Discrimination - Participants

All participants:

- Dutch, right-handed, with normal hearing and (corrected to) normal vision
- \Rightarrow 14 non-brain-damaged controls
- \Rightarrow 6 aphasic subjects

Discrimination - Participants

Initials	Age	Gender	Type	Months	PALPA
			of	post onset	Nonword
			Aphasia		Discrimination
WB	57	male	Wernicke	148	56/72
BB	64	male	Global	5	53/72
ΕK	48	male	Amnestic	16	58/72
TB	47	female	Global	8	68/72
JH	51	female	Mixed	44	66/72
MB	47	female	Global	4	64/72

Discrimination - Results

Control Subjects:

- scored at ceiling in AO and AV conditions
- VO worse than AO or AV (Wilcoxon: p<0.01)
 - concerning mainly voicing and manner

Discrimination - Results

faculty of arts

Control Subjects:

university of

eroningen

- scored at ceiling in AO and AV conditions
- VO worse than AO or AV (Wilcoxon: p<0.01)
 - concerning mainly voicing and manner

Aphasic Subjects:

- worse than controls in all 3 conditions (Mann-Whitney-U: p<.001)
- performance differed between the 3 conditions (Friedman: p<.01):
 - AV better than AO and VO (Wilcoxon: p<.05)
 - AO better than VO (Wilcoxon: p<.05)

Discrimination - Results

Condition	Controls	Aphasic subj.	Z-Score	p-value
	(avg. contect)	(avg. contect)		
Auditory only condition	99%	87%	-3.521	p < .001
Audiovisual condition	99%	90%	-3.545	p < .001
Visual only condition	83%	63%	-3.387	p < .001

Discrimination - Results

Performance of aphasic listeners in 'different' condition:

Condition	Same (avg. correct)	Different (avg. correct)
Auditory only condition	94%	80%
Audiovisual condition	94%	85%
Visual only condition	78%	48%

Discrimination - Results

Statistic analyses with Wilcoxon, 2-tailed: *:p<.05

Discrimination - Results

- type of feature analysis (place vs. manner vs. voicing):
 - significant influence for the AO condition
 - a trend for the AV condition
- \Rightarrow contrasts in *voicing* were most difficult

Statistic analyses with Friedman Anova: **:p<.01; #:p=.094

Discrimination - Results

Individual Results:

Initiala	A	uditory o	nly	-	Audiovisu	al
mutais	Place	Manner	Voicing	Place	Manner	Voicing
WB (Wernicke)	100%	100%	50%	83%	100%	67%
BB (Global)	50%	50%	17%	67%	60%	17%
EK (Amnestic)	83%	67%	67%	83%	100%	17%
TB (Global)	67%	100%	50%	100%	100%	83%
JH (Mixed)	100%	67%	83%	100%	100%	67%
MB (Global)	50%	50%	17%	50%	67%	100%

- additional lip-reading improves performance
 - replicating results of e.g. Shindo et al. (1991)

faculty of arts

university of

eroningen

- additional lip-reading improves performance
 - replicating results of e.g. Shindo et al. (1991)
- most difficulties occur with small differences
 - as previously shown by Blumstein et al. (1977) for English

Differences in voicing are most difficult to perceive

- contrary to Klitsch (2008) \rightarrow but: difference in materials
- in line with the results for Hungarian by Csépe et al. (2001)

Differences in voicing are most difficult to perceive

- contrary to Klitsch (2008) \rightarrow but: difference in materials
- in line with the results for Hungarian by Csépe et al. (2001)

Differences between *place of articulation* and *voicing*:

Differences in voicing are most difficult to perceive

- contrary to Klitsch (2008) \rightarrow but: difference in materials
- in line with the results for Hungarian by Csépe et al. (2001)

Differences between *place of articulation* and *voicing*:

- place of articulation is conveyed by spectral cues
- *voicing* is conveyed by temporal cues

faculty of arts

university of

Differences in voicing are most difficult to perceive

- contrary to Klitsch (2008) \rightarrow but: difference in materials
- in line with the results for Hungarian by Csépe et al. (2001)

Differences between *place of articulation* and *voicing*:

- place of articulation is conveyed by spectral cues
- *voicing* is conveyed by temporal cues
- \Rightarrow This difference could explain the different performance

Identification - Aims

faculty of arts

university of

groningen

- replicate previous findings: McGurk also in Aphasia
- show that identification benefits from lip-reading
- determine probability McGurk in specific patient group

Identification - Procedure

Identification - Material

Identification - Example

Small experiment

Your Results

faculty of arts

university of groningen

ŝ

Participant	/t/	/p/	/k/
1	0,22	0,27	0,5
2	0,05	0,27	0,66
3	0,55	0,11	0,33
4	0,16	0,44	0,38
5	0,44	0,11	0,44
6	0,61	0,05	0,33
7	0,33	0,33	0,33
8	0,22	0,33	0,44
9	0,27	0,44	0,27
10	0,22	0,11	0,66
11	0,83	0,11	0,05
12	0,33	0,22	0,44
13	0,27	0,16	0,27
mean	0,346154	0,226923	0,392308

t (McGurk) p (auditory k (visual)

Identification - Participants

- same controls as in discrimination
- 5 patients, namely:

Initials	Age	Gender	Type of Aphasia	Months post onset	PALPA Nonword Discrimination
WB	57	male	Wernicke	148	56/72
₿₿	6 4	male	Global	5	53/72
EK	48	male	Amnestic	16	58/72
ŦB	47	female	Global	8	68/72
JH	51	female	Mixed	44	66/72
MB	47	female	Global	4	64/72
*DM	67	male	Mixed	10	56/72

Identification - Results

Identification - Results

Identification - Reaction Times

Evaluation of the reaction times:

- between conditions
- between given answers in McGurk condition
- Only data of 3 aphasic participants...

Identification - Participants

Initials	Age	Gender	Type of Aphasia	Months post onset	PALPA Nonword Discrimination
WB	57	male	Wernicke	148	56/72
₽₽	64	male	Global	5	53/72
EK	48	male	Amnestic	16	58/72
ŦB	47	female	Global	8	68/72
JH	51	female	Mixed	44	66/72
MB	47	female	Global	4	64/72
*DM	67	male	Mixed	10	56/72

Results I

	Auditory Only		Audiovisual	McGurk (per answer type)		
Initials	correct	RT				
WB EK JH	53% 59% 55%	2176ms 2718ms 2755ms				
Controls (mean)	99%	1462ms		1		

Results and reactiontimes for the three conditions

• Visual only condition: worse than AO for each participant

Results I

	Auditory Only		Audiovisual		McGurk (pe	r answer type)
Initials	correct	RT	correct	RT		1
WB EK JH	53% 59% 55%	2176ms 2718ms 2755ms	73% 76% 89%	1674ms 2516ms 2353ms		
Controls (mean)	99%	1462ms	100%	1422ms		

Results and reactiontimes for the three conditions

• Visual only condition: worse than AO for each participant

Results I

	Audito	ry Only	Audio	ovisual		Mc	Gurk (per	answer ty	pe)	
Initials	correct	RT	correct	RT	McGur Amount	k (/t/) RT	Auditor Amount	y (/p/) RT	Visual Amount	(/k/) RT
WB EK JH	53% 59% 55%	2176ms 2718ms 2755ms	73% 76% 89%	1674ms 2516ms 2353ms	50% 18% 39%	1989ms 1912ms 2565ms	23% 46% 39%	2316ms 2061ms 2718ms	27% 36% 22%	2195ms 2297ms 2693ms
Controls (mean)	99%	1462ms	100%	1422ms	22%	2021ms	33%	1650ms	45%	1644ms

Results and reactiontimes for the three conditions

• Visual only condition: worse than AO for each participant

Results II

嵩

*: Mann-Whitney-U Test, p<.05

CLCG

Results II

赏

*: Mann-Whitney-U Test, p<.05

Results II

赏

*: Mann-Whitney-U Test, p<.05

CLCG

Results II

赏

*: Mann-Whitney-U Test, p<.05

Results - Summary I

- Aphasic subjects perform worse in AO and AV condition than nbd-controls
- Aphasic subjects answer slower in all three conditions
- Aphasic subjects show improved performance in AV condition compared with AO condition
- Faster reactiontimes on AV than AO for aphasic subjects

Results - Summary II

Analyses within McGurk condition:

- Occurence of answertype:
 - non-brain-damaged controls: visual > auditory > fusion
 - aphasic subjects: no significant difference for either subject
- Reactiontimes in respect to answertype:
 - non-brain-damaged controls: sign. increase when fusion-response
 - aphasic subjects: no influence of answertype

Discussion - Proposal

Reactiontimes on fusion percepts

- Nbd-controls slower on fusion than other responses...
 - ... because of additional resources needed!
 - Despite fusion they access unimodal information (Soto-Faraco & Alsius, 2007, 2009)
 - Accessing unimodal information prior to fusion could be the factor that slows down!
- Aphasic subjects might rely solely on automatic multimodal processing without access to unimodal information!
- Therefore no slowdown would occur!

Introduction Study 1 Study 2 Studies 1 & 2 Discussion & Conclusion

Correlations - Results

All correlations are significant! (Spearman: AO: p=.019; AV: p=.001; VO: p=.031)

CLCG

Correlations - Discussion

Results of both experiments correlate with each other! However: Improvement by lip-reading (discrimination) does not correlate with McGurk amount(Identification), but... not enough participants yet!

Summing up...

faculty of arts

university of

eroningen

Aphasic subjects have problems in perception:

- more with AO than AV stimuli (Ident. & Discr.)
- increasingly with smaller differences (Discr.)
- especially of 'voicing' (Discr.)

McGurk is comparable to healthy subjects regarding pattern (Ident.),

• but reaction times differ and suggest different processing strategy

...and looking forward

At the moment: ERP-study to investigate the brain activity during audiovisual integration!

Questions & Comments

Thank you for your attention! e-mail: d.a.hessler@rug.nl website: www.doerte.eu